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We present particle dynamics simulations for the response of magnetorheologi-
cal (MR) fluids upon application of a magnetic field. The particles motion is con-
sidered to be governed by magnetic, hydrodynamic, and repulsive interactions.
Fluid-particle interactions are accounted for via Stokes’ drag while inter-particle
repulsions are modeled through approximate hard-sphere rejections. In accordance
with their greater significance, on the other hand (linear) magnetic interactions are
fully simulated. The time evolution is considered to be magnetically quasi-static
and magnetostatic forces are derived from the solution of (steady) Maxwell’s equa-
tions, recomputed at each instant in time. For this we use a potential theoretic for-
mulation where the boundary integral equations are solved with a fast multipole
approach. We show that the resulting numerical codes can be effectively used to
study a number of experimental observables such as effective magnetic permeabili-
ties and response time-scales which are of crucial importance in the design of MR
fluids. c© 1999 Academic Press

Key Words:particle dynamics; fast multipole method; MR fluids; effective perme-
ability; response time scale.

1. INTRODUCTION

Magnetorheological (MR) and electrorheological (ER) fluids constitute important classes
of “smart” controllable materials. The essential characteristic of MR (resp., ER) fluids is
that they may be reversibly transformed from a liquid state to that of a Bingham solid upon
application of a magnetic (resp., electric) field. Although the discovery of these materials
dates back to over half a century ago (Winslow [41, 42] for ER and Rabinow [33] for MR),
their industrial realization had, until recently, proved elusive due, in part, to the stringent
stability and durability requirements that such applications demand. Indeed, it was only a
few years ago that commercially viable fluids of this type were achieved (Carlsonet al.[5, 6]
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and Leventon [27]) and controllable devices based on this technology are now beginning
to evolve (see www.mrfluid.com). For the most part, these devices employ magnetic fluids
as these present a number of advantages over their electric counterparts. These include
higher achievable yield stresses (20 to 50 times those attainable with ER suspensions),
lower voltage demands, a wider range of possible liquid carriers, and lower sensitivity to
contaminants and extremes in temperature (Weisset al. [38–40], Carlsonet al. [6], Jolly
et al. [22, 23]).

Typical ER and MR fluids consist of micron-sized electrically conducting or magnetically
permeable particles dispersed in a carrier oil. It is this composition that, in fact, results in
their field-dependent rheology: an applied field polarizes the particles which therefore move
to reduce the stored electromagnetic energy of the ensemble. An energetically favorable
arrangement consists of particle chains aligned in the direction of the applied field and this,
in turn, gives rise to a strong resistance to applied strains (on the order of 100 kPa for MR
fluids); see, e.g., Carlsonet al. [5], Weisset al. [38], Jolly et al. [21–23]. In an attempt
at understanding the main factors affecting this so-called “MR (or ER)-effect” and with
a view to its possible enhancement for potential applications, a myriad of experimental
and theoretical studies have been carried out since the effect was first recognized (see,
e.g., Tao [37], Bullough [4], and references therein). The great number of variables that
influence this behavior, however, conspired against the derivation of an accurate quantitative
assessment of their relative importance since experiments could only explore small fractions
of parameter space and theoretical work had to rely on over-simplified models. As it became
practicable, on the other hand, it also became clear that numerical simulations on more
complete models could deliver substantial information for the design of new or improved
fluids. In particular, over the last decade, a number of numerical studies were performed
on particle dynamics models for ER fluids that have sought to account for the different
types of interactions (electric, hydrodynamic, Brownian, etc.) that arise in the presence of
applied fields (Klingenberget al.[25], Hass [17], Hess and Weider [18], Mohebiet al.[30],
Parthasarathy and Klingenberg [32]). In this manner, the qualitative features of a number
of experimental observables (such as the path of chain formation) were recreated and new
insight was gained into the mechanisms responsible for the ER effect.

In order to make these models numerically tractable, a number of simplifications had to
be performed. Some of them, such as neglecting Brownian forces, could be easily justi-
fied on the basis of simple scaling arguments (see, Subsection 2.2). Others, however, were
only made for computational convenience. In fact, such was the case, for instance, with the
inter-particle electromagnetic forces as well as with their hydrodynamic behavior. Although
these are clearly the dominant effects within the system, their accurate mathematical rep-
resentation required what appeared to be a “practically impossible” (Bonnecaze and Brady
[3, p. 2188]) solution of Stokes or Maxwell’s equations in a highly oscillatory geometry
and were therefore, in all of these treatments, replaced by point-dipole and Stokes drag
approximations, respectively. We intend to show here, on the other hand, that some recent
advances in the development of computational algorithms do indeed allow for anaccu-
rate and efficienttreatment of such oscillatory problems. While it is still certainly true that
standard finite-element or boundary-element calculations on these models (where each par-
ticle, or particle boundary, would comprise several elements and where all of which would
contribute to the overall field) are well beyond today’s computational capabilities, we shall
demonstrate that such calculations become practicable through the use of afast multipole
method(FMM).
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The basic idea behind FMM (Rokhlin [34], Greengard and Rokhlin [12], and Greengard
[11]) consists of using multipole expansions to calculate far-field contributions to a slowly
decaying (e.g., Newtonian) potential at any given point. This observation can, in fact, be ef-
fectively used in a wide variety of (linear) potential calculations by appealing to the iterative
solution of the corresponding boundary integral equations (see Section 3). For the present
work we have initially implemented an FMM to handle the full (linear) electromagnetic
interactions at each time step of a particle dynamics simulation (Section 3), while we have
kept with previous models in treating the hydrodynamics via Stokes drag. We note, however,
that an analogous fast multipole approach can be used to solve the full Stokes equations of
fluid flow (Greengard and Kropinski [16]). It should also be remarked that, in accordance
with their greater practical importance, our interest lies with MR fluids which, in fact, we
use for experimental validation (Section 4). While our model in its present state would, in
principle, equally apply to ER fluids, we suspect that our assumptions on the dominance
of electromagnetic and hydrodynamic forces constitutes a better approximation in the case
of MR composites, as is evidenced by their aforementioned enhanced stability properties.
In any case, these considerations and those pertaining to other possible extensions (Stokes
equations, three-dimensional geometries, models of rheological response, other higher or-
der effects, etc.) will be left for future work. Specifically, our formulations can, in principle,
be immediately applied to the three-dimensional case. However, such implementation re-
quires a good three-dimensional fast multipole algorithm which, to our understanding, is
still under development.

2. EQUATIONS OF MOTION

2.1. Governing Forces and Equations

In this section, we derive the equations of motion for circular particles inR2 in the
presence of an external magnetic fieldEH0. The motion of thekth particle is described by
Newton’s second law of motion

Mk
d2Exk

dt2
= EFk, (2.1)

subject to the initial position and velocity

Ex0
k = Exk(0) and Ev0

k = Evk(0), (2.2)

whereMk is the mass,Exk is the center, andEFk is the total force acting on thekth particle,
which occupies the regionÄk. Contributions toEFk arise from several sources, namely (see
e.g., Klingenberget al. [25], Parthasarathy and Klingenberg [32], and Mohebiet al. [30]):

• Magnetic forces.The magnetic force onÄk can be calculated from the local fieldEH
with the aid of the Maxwell stress tensorσMax=µ0[ EH EHT − 1

2| EH|2δ] (δ= unit tensor and
µ0 = the permeability for the carrier oil) as

EFmag
k = 1

2π

∫
∂Äk

σMax · En dS, (2.3)

whereEn is the unit normal vector on∂Äk.
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• Hydrodynamic forces.For small Reynolds number, the hydrodynamics can be decou-
pled from the magnetostatic problem and can be approximated by the Stokes’ drag (see
Batchelor [1, p. 244] for details). Indeed, the hydrodynamic force can be approximated
using Oseen’s equations for flow due to a moving body at small Reynolds number as

EFhydro
k = −D

dExk

dt
. (2.4)

For circular cylinders for instance, the Stokes drag coefficientD is given byD= 4πηc/

log(7.4/Re) per unit length. Hereηc is the carrier oil absolute viscosity andRe is the
Reynolds number. Formulation (2.4) has been widely used to approximate the hydrodynamic
force in dynamic simulations for both MR and ER fluids (see, e.g., Klingenberget al. [25],
Hass [17], and Mohebiet al. [30]).
• Repelling forces.In our simulations, we shall assume that both the particles and

the container walls arehard. To approximate this regime, we shall follow the work of
Klingenberget al. [25] and Mohebiet al. [30] and propose that arepelling forceacts on
thekth particle as it approaches others or a wall of the container. A simple model for such
a force is given, for instance, by

EFrep
k = −µk H2

0 R
M∑

l=1

Er kl e−β|dkl | − Enk µk H2
0 R e−β|d

wall
k |, (2.5)

where M is the total number of particles,H0 is the intensity of the applied magnetic
field, R is the radius of the particle,β >0 is the repelling parameter,Er kl = (Exl − Exk)/|Exl −
Exk|, dkl = dist(Äk, Äl ). The wall repelling force usesEnk, an outward unit normal vector
at a point p on the boundary of the containerÄ where p is closest toExk on ∂Ä, and
|dwall

k | =dist(Äk, ∂Ä). Other models, including polynomial forms, have been studied by
Klingenberget al. [25].

2.2. Dimensional Analysis

Our simulations will proceed on the non-dimensionalized equations of motion which
we now derive. Let us begin by denoting the dimensionless variables with an asterisk and
performing the following scalings in Eqs. (2.1)–(2.2)

Ex = REx∗,
t = τ t∗, τ is the scaling time,

EFmag
k = Fs

k
EFmag,∗

k , Fs
k = µ0H2

0 R,

EFrep
k = Fs

k
EFrep,∗

k , EFrep,∗
k = −

M∑
l=1

Er kl e−β|dkl | − Enk e−β|d
wall
k |,

EFhydro
k = −DR

τ

dEx∗k
dt∗

, τ = DR

Fs
k

= 4π

µ0 log(7.4/Re)

ηc

H2
0

.

It then follows that

Gk
d2Ex∗k
dt∗2
= −dEx∗k

dt∗
+ EFmag,∗

k + EFrep,∗
k , (2.6)
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where

Gk = Mk R

Fs
k τ

2
= ρpR2H2

0µk

32π2[log(7.4/Re)]2η2
c

is a dimensionless constant andρp is the density of the particle per unit length. For the
MR fluids we seek to model, the particles are basically composed of iron with diameters
of 3 to 5 microns andµk

∼= 103×µ0. The carrier oil viscosityηc
∼= 0.01− 0.1 Pa-s and the

applied magnetic fluxµ0H0
∼= 0.001− 0.1 Tesla, so thatGk

∼= 10−4. Thus the term on the
left of (2.6) is several orders of magnitude smaller than those on the right hand side, and
we therefore set it to zero. Consequently, the equations of motion (2.1)–(2.2) become

dEx∗k
dt∗
= EFmag,∗

k + EFrep,∗
k and Ex0

k = Exk(0). (2.7)

It is to be remarked that for MR fluids with characteristics as described above, the thermal
effects from the continuous phase molecules on the particles are quite small for rapid field
application (Mohebiet al. [30]). Therefore, the magnetostatic forces largely dominate the
Brownian forces. More precisely, the ratio of the Brownian force to the magnetic force
is approximately given byλ= 2πKT/R3µk H2

0 , whereK= 1.38× 10−23 Joules/K is the
Boltzmann’s constant andT = 298 K is the operating temperature. In our case, this ratio is
of order 10−8 which justifies our neglecting the effects of Brownian motion.

3. MAGNETIC FORCES

Clearly, the main challenge with the model (2.7) consists of the calculation of the highly
oscillatory magnetic interactions{EFmag,∗

k }Mk=1. Indeed, an accurate estimation of such forces
demands the continuous knowledge of the local magnetic field,EH as the particles rearrange
themselves, so that Maxwell’s equations must be resolved at each instant in time. More
precisely, let us considerÄ ⊂ R2 which is filled with a non-magnetic viscous fluid andM
permeable circular particlesÄ1, Ä2, . . . , ÄM . Then, since the electromagnetic time scale
is much shorter than that of the motion itself, we may safely assume that the fields are
governed by the equations of magnetostatics, namely,

∇ · EB = 0, and ∇ × EH = EJ, (3.1)

whereEJ is the free current,EH is the magnetic field, andEB is the magnetic induction. In our
case, the material constituents are isotropic and hence

EB = EBi + µ0 EH = µ EH, (3.2)

whereEBi is the intrinsic induction caused by magnetization,µ0 is the permeability of free
space, and

µ =
{
µk in thekth particle
µ0 in the carrier oil.

(3.3)

Notice that the{µk}Mk=1 are not necessarily identical and are substantially larger than
µ0 (µk ∼ 2000µ0). In general,µk is defined as a function ofEH to model magnetic satura-
tion. For moderate fields, however,µk may be accurately approximated as a constant and
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we shall take this as our working assumption. Moreover, for the composites we consider,
no free currents are present in the domain. Thus the second equation in (3.1) becomes
∇ × EH= 0 which, in turn, implies that the magnetic field can be written in terms of a scalar
potentialφ,

EH = −∇φ. (3.4)

As a result, Eqs. (3.1)–(3.4) can be simplified to

∇ · (µ∇φ) = 0, (3.5)

with µ given by (3.3) andµk, µ0 constant. Note that (3.3) implies that Eq. (3.5) has highly
oscillatory coefficients. Also, of course, Eq. (3.5) encodes the continuity of the magnetic
potentialφ and of the normal component ofEB. That is, for anyk= 1, 2, . . . ,M ,

lim
p→∂Äk

p∈Äk

φ(p) = lim
p→∂Äk

p∈Äc
k

φ(p) (3.6)

lim
p→∂Äk

p∈Äk

µk
∂φ

∂Enk,p
(p) = lim

p→∂Äk

p∈Äc
k

µ0
∂φ

∂Enk,p
(p), (3.7)

whereEnk,p is an outward unit normal vector atp∈ ∂Äk andÄc
k=Ä\Ǟk is the complement of

Äk. We remark here that to study the electrostatic particle interactions for ER fluids, Clercx
and Bossis [7] attempted to solve (3.5)–(3.7) in unbounded domains using the multipole
expansions. They used the relation of the external applied electric field to the multipole
moments along with the spherical harmonic functions with unknown coefficients to derive
the expansions for the potential which can be solved through the boundary conditions
(3.6)–(3.7). Although the spirit of their work closely resembles ours, formulations for the
potential are different. Most importantly, both approaches will be unsuitable for numerical
calculation without thefast multipole methodwhich we will adopt and use in our calculation
for the potential.

3.1. Integral Equation Formulation and Boundary Element Discretization

Although, as we said, the coefficients of Eq. (3.5) are rapidly changing in space, they
do remain constant in eachÄk. Thus the overall potential can be derived from appropriate
charge densities supported on the boundaries of the particles. These densities satisfy certain
integral equations which are, in principle, amenable to solution by finite (boundary) element
approximation. As we shall discuss below (Subsection 3.2), the difficulties associated with
the high computational cost of classical boundary element approximation for this kind of
problem can, in fact, be overcome through the implementation of the fast multipole method.

To derive the integral equations, let us denote by∂Ä0 the boundary of the domainÄ and
impose the following Dirichlet boundary condition on∂Ä0

φ|∂Ä0
= f. (3.8)

A potentialφ satisfying (3.5)–(3.8) can be represented by single-layer and double-layer
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integrals, see, e.g., Colton and Kress [8] and Greengard and Moura [15], in the form

φ(p) =
M∑

j=1

∫
∂Ä j

G(p,q)η j (q) ds(q)+
∫
∂Ä0

∂G

∂En∂Ä0,q
(p,q)ξ(q) ds(q), p ∈ Ä. (3.9)

Here,En∂Ä0,q is the outward unit normal vectors atq∈ ∂Ä0 andG(p,q)= 1
2π log|p− q| is

the fundamental solution of Laplace’s equation inR2. The functionsη j ’s on{∂Ä j} j=M
j=1 and

ξ on ∂Ä0 are appropriate (unknown) surface densities. Note that the potentialφ in (3.9)
automatically satisfies

1φ = 0 onÄk for k = 0, 1, . . . ,M,

and the continuity condition (3.6) at the interfaces. In this regard, we remark here that our
representation of the potentialφ differs from thestandardone described in most of the
pertinent literature. Indeed, while astandardrepresentation would involve both single- and
double-layer potentials at each material interface, the formulation (3.9) implicitly guarantees
the continuity of the potential at particle-fluid boundaries. In addition, the use of a sole
double-layer integral on the exterior boundary ensures that the equations forη j ’s andξ that
result from (3.7)–(3.8) constitute a system of Fredholm equation of the second kind. In fact,
using thejump relationsof potential theory (see, e.g., Jaswon [19] and Colton and Kress
[8]), we obtain from Eqs. (3.7)–(3.8) the following system of integral equations,

ηk(p)− 2λk

M∑
j=1

∫
∂Ä j

∂

∂Enk,p
G(p,q)η j (q) ds(q)

− 2λk
∂

∂Enk,p

∫
∂Ä0

∂G

∂En∂Ä0,q
(p,q)ξ(q) ds(q) = 0, (3.10)

ξ(p)+ 2
M∑

j=1

∫
∂Ä j

G(p,q)η j (q) ds(q)+ 2
∫
∂Ä0

∂G

∂En∂Ä0,q
(p,q)ξ(q) ds(q) = 2 f (p), (3.11)

whereλk= (µk − µ0)/(µk + µ0) and Eqs. (3.10)–(3.11) hold forp ∈ {∂Äk}Mk=1 and∂Ä0,
respectively.

Our approach to the solution of Eqs. (3.10)–(3.11) (at any fixed instant in time) relies on
the inversion of their discretized version. To this end, we divide each boundary{Ä j }Mj=0,
including the exterior boundary, intoNj disjoint elements{γ l

j }Nj

l=1 and we denote by{pl
j }Nj

l=1

the midpoint of{γ l
j }Nj

l=1 for j = 0, 1, . . . ,M andN= ∑M
j=0 Nj . To derive the approximate

equations, we assume that the unknown densities{η j }Mj=1 andξ in (3.10)–(3.11) are constant
over each element, with collocation taken at the midpoints. That is,∫

γ l
j

U (p,q)%(q) ds(q) ∼= %(pl
j

) ∫
γ l

j

U(p,q) ds(q)

for ρ being eitherη j or ξ andU being one of the kernels in (3.10)–(3.11). Thus, denoting
ηl

j = η j (pl
j ) andξ l = ξ(pl

0), Eqs. (3.10)–(3.11) can be transformed into a matrix equation

(I +M N)UN = FN . (3.12)
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Here,I is theN× N identity matrix,

M N =
[

A B
C D

]
, UN =

[
8

Eξ

]
, Fi

N =
{

0 1≤ i ≤ Ñ

2 f
(

pi
0

)
, Ñ + 1≤ i ≤ Ñ + N0,

whereÑ denotes
∑M

j=1 Nj ,

8 =


Eη1

Eη2
...

EηM

 , Eηk =


η1

k

η2
k
...

η
Nk
k

 for 1≤ k ≤ M, Eξ =


ξ1

ξ2
...

ξN0

 ,

A8
(

pi
k

) = −λk

π

M∑
j=1

Nj∑
l=1

ηl
j

∫
γ l

j

(
pi

k − q
) · Enk,pi

k∣∣pi
k − q

∣∣2 ds(q), (3.13)

BEξ(pi
k

) = −λk

π

N0∑
l=1

ξ l
0

∫
γ l

0

∂2

∂Enk,pi
k
∂Enl ,q

log
∣∣pi

k − q
∣∣ ds(q), (3.14)

C8
(

pi
0

) = 1

π

M∑
j=1

Nj∑
l=1

ηl
j

∫
γ l

j

log
∣∣pi

0− q
∣∣ ds(q), (3.15)

DEξ(pi
0

) = 1

π

N0∑
l=1

ξ l
0

∫
γ l

0

(
q − pi

0

) · Enγ l
0,q∣∣pi

0− q
∣∣2 ds(q). (3.16)

3.2. Numerical Implementation

To solve forUN in (3.12), we use an iterative method, namely GMRES (generalized
minimal residue). As an iterative solver, GMRES demands the repeated calculation of
products(I + M N)UN . The matrixM N in our linear system (3.12) is fully dense so that
multiplication ofM N andUN would requireO(N2) operations. However, as we describe
below, by exploiting the physical nature of the underlying magnetostatic problem it is
possible to accurately approximate these matrix vector multiplication by a procedure, the
fast multipole method(FMM), whose operation count is only ofO(N log N).

The FMM algorithm was introduced in Rokhlin [34] for rapid solution of integral equa-
tions in potential theory and later extended by Greengard and Rokhlin [10] to fast evaluation
of Coulombic interactions in large-scale systems of particles. A typical calculation of the
field at a given point due to a distribution ofN charges (M NUN , in our notation) can
be broken into two parts, the far-field and the near-field calculations. However, since the
Coulombic potential decays rather slowly (logarithmically), the far-field calculation must,
in principle, account for all interactions among the particles and, consequently, the number
of operations for calculating the field isO(N2). The goal of the fast multipole method is
to reduce this number of operations while accounting for all interactions and maintaining
any desirable order of accuracy. To achieve this, the basic strategy consists of clustering the
charges at different spatial lengths to allow for the computation of the interactions between
clusters by using multipole expansions. Near-field interactions are computed directly. This
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systematic process is the key ingredient in reducing the number of operations in the numer-
ical matrix-vector multiplications. Complete details of the FMM algorithm can be found in
Greengard [11]. For other applications and implementations of the FMM see also Rokhlin
[34, 35], Greengard and Rokhlin [10, 12], Greengard and Gropp [13], Greengard and Strain
[14], Enghetaet al. [9], Murphy et al. [31], Greengard and Moura [15], Joneset al. [24],
McKenneyet al. [29], and Greengard and Kropinski [16].

3.3. Error Analysis

In this subsection, we present a simple error analysis for the solution of the boundary
element method discussed in the previous subsection. Since we employ the midpoint rule
for all the quadratures, the order of convergence is expected and will be shown to be
at least quadratic. Let us start with a system of integral equations(I + M)U=F where
U,F ∈ L2(0) andM : L2(0)→ L2(0) is a compact operator (theL2(0)-topology can, of
course, be substituted by others depending on the regularity ofU). We assumeM takes the
form

MU(p) =
∫
0

K (p,q)U (q) dq.

Also, the discretized boundary integral equations can be written as anN× N system

(I + MN)UN = FN

with the midpoint collocated right-hand side [FN ] i = F(pi ) for 1≤ i ≤ N, where thepi ’s
are the midpoints of the segments{0i }Ni=1, so that [(I +M)U ](pi )− (I +MN)UN = 0. By
defining(PNU )i =U (pi )χ{pi }, we have

(I + MN)(UN − PNU ) = PN MU − MN PNU. (3.17)

For sufficiently smooth boundaries andM compact, it can be shown that (see Kress [26])∥∥(I + MN)
−1
∥∥
{l 2;l 2} ≤ K, independently ofN. (3.18)

It follows from (3.17) and (3.18) that

‖UN − PNU‖l 2 ≤ C1K‖PN MU − MN PNU‖l 2, (3.19)

for N > 0. Let E= PN MU−MN PNU denote the locally truncated error atp. Since we
are using the midpoint quadrature rule, forp away from the midpoints

|E(p)|l 2 =
∣∣∣∣∣
∫
0

K (p,q)U (q) dq−
N∑

i=1

K (p, pi )U (pi )|0i |
∣∣∣∣∣
l 2

≤ O(N−2),

which implies

‖UN − PNU‖l 2 ≤ C2KN−2.

For p= pi , we compute
∫
0i

K (pi ,q)U (q) dq exactly (see Greengard and Moura [15]).
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4. NUMERICAL RESULTS

In this section, we first describe the physical regime and parameters for the dynamic sim-
ulations of five MR fluids. We then discuss our results and quantify the magnetic responses
based on their time scales and effective permeabilities.

4.1. Microstructure Evolutions in MR Fluids

The dimensions for the rectangular domain that we consider for dynamic simulation
areLx × L y= 0.237× 0.1 mm. We assume that all particles are circular, initially centered
randomly at{Exi }Mi=1. We consider five samples of MR fluids, corresponding to 5, 10, 15, 20,
and 30% volume fractions. We remark here that due to our two-dimensional framework,
volume fractions should be understood as area fractions. There are 170, 341, 511, 682, and
1024 particles for the respective samples. In addition, we assume the following physical
parameters in our simulations:

radius R= 1.5 micrometers
fluid density ρ0 = 103 kg/m3

particle density ρ = 7× ρ0

fluid permeability µ0 = 4π10−7N/A2

particle permeability µk = 2000×µ0.
viscosity ηc = 0.1 Pa s
applied field H0 = 1.33E4 A/m.

The repelling parameter in (2.5) and the Reynolds number are assumed to be 40 and 0.01,
respectively. For the boundary conditions on the rectangle, we assumeφ satisfies

φ(x, y) =


H0L y, 0≤ x ≤ Lx, y = 0

H0L y
(
1− y

L y

)
, 0≤ y ≤ L y, x = Lx

0, 0≤ x ≤ Lx, y = L y

H0L y
(
1− y

L y

)
, 0≤ y ≤ L y, x = 0.

(4.1)

The results for the dynamic simulations for 10, 20, and 30% volume fraction MR fluids are
displayed in Figs. 1–3, respectively.

Based on these results, we observe that, at first, particles form short fragmented chains in
the direction of the applied field. Subsequently these short chains merge together and form
longer chains. As time progresses further, these chain-like clusters continue to lengthen,
align, and approach a steady state. We also observe that the times for the columnar structures
to form and the particle volume fraction(ϕ) of the sample are inversely related.

4.2. Quantifications of Microstructure Evolutions

Recent experimental work has been conducted to indirectly measure the microstructure
response in MR fluids using real-time permeability measurements (Jollyet al. [21]) and
analogously in ER fluids using permitivity measurements (Blackwoodet al. [2]). In both
cases, experimental data were fitted with exponential functions in an attempt to identify the
time constantst1 for microstructure formation. A theoretical estimate of such constants can



FIG. 1. Dynamic simulations for MR fluid with 10% volume fraction.

FIG. 2. Dynamic simulations for MR fluid with 20% volume fraction.
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FIG. 3. Dynamic simulations for MR fluid with 30% volume fraction.

be easily derived by consideration of the time response of a pair of point dipoles within a
viscous fluid; this results in (Jollyet al. [21])

t1 ∼= C1ηc

µk H2
0

ϕ−n + C2 (4.2)

with n= 5/3. In this subsection, we undertake a numerical study of these time scales. Fol-
lowing the experimental procedure, we first derive values for such constants from effective
permeability calculations. Finally, we estimate similar constants from different macroscopic
measurements, namely that of theaverage kinetic energy.

We begin by examining the evolution of the effective permeability of the MR fluid as a
function of time. As we said, we do so with the expectation that the effective permeability
reflects the microstructure state within the MR fluid. The definition and the formulation for
the effective permeability, which is based on theory of homogenization (Jikov [20]), are
derived in Lyet al. [28]. The effective permeability is defined as a matrix

µeff =
[
µ̄11 µ̄12

µ̄21 µ̄22

]
,

where

µeff〈∇φ(Ex)〉 = 〈µ(Ex)∇φ(Ex)〉, (4.3)

and 〈·〉 denotes the spatial average. Using Green’s identity and the boundary conditions
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(4.1), Eq. (4.3) yields explicitly

µ̄12 =
1

H0Lx L y

M∑
k=1

(µk − µ0)

∫
∂Äk

φnx dS

and

µ̄22 = µ0+ 1

H0Lx L y

M∑
k=1

(µk − µ0)

∫
∂Äk

φny dS.

Because the applied magnetic field is in the vertical direction, ¯µ22 is a more relevant
quantity and we denote by ¯µ := µ̄22 the effective permeability reflecting the overall magnetic
response of the MR fluid. In Fig. 4, we display the effective permeability as a function of

FIG. 4. Least square fitting (line) on the computed effective permeability (star) and the time scalet1 (solid
square).
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time. We remark that the effective permeabilities obtained from the dynamic simulations
are roughly 40–50% smaller than those obtained from numerical and physical experiments
in Simonet al. [36]. One reason we suggest pertains to the percolation limit of particle
separation. As pointed out in the study of Simonet al. [36], the inter-particle distance
plays a major role in the effective permeability in MR fluids: the permeability increases
as the inter-particle distance decreases. For the two-dimensional case, it is necessary to
allow the particle gap to approach 1% of the particle radius in order to achieve values
comparable to those of experimental results. In our simulations, the gaps between particles
were constrained to at least 4% of the radius. One could allow the particles in our study to
get closer to 1% of the radius by refining the boundary integral element which, of course,
would lead to prolonged computing time.

Figure 4 shows that the values of the effective permeabilities elevate faster for samples
with higher concentration of iron. To identify the time-scales that correspond to this behav-
ior, we perform an exponential fit to a function of the form ¯µ(t)= A(1− exp(−t/t1))+C
for each of the considered samples. The values of the time scalest1 for the respec-
tive volume fractions are displayed in Fig. 4 by the large solid squares. To determine
the dependence of the time scalet1 on the volume fractionϕ, we use Eq. (4.2) to fit
the data in Fig. 4 to find thatn ∼ 1 (see Fig. 5). In this regard, our experiments indi-
cate that the value of the powern is rather insensitive to the initial configuration of the
system.

FIG. 5. Time scalet1 obtained from effective permeability and its least-square fitting for the power law (4.2).
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Finally, motivated by the observation of initial rapid particle motion and subsequent
slow rearrangement, we have monitored the evolution of the average particle kinetic en-
ergy E(t) as another macroscopic measure of microstructure changes. For this we define
E(t)= 1

2MV̄(t)2 whereM is the particle mass and̄V(t) is the average velocity,

V̄(t) = 1

M

M∑
k=1

|Exk(t)− Exk(t −1t)|
1t

.

Figure 6 displays the average particle kinetic energyE(t) and confirms thatE(t), associated
with the motion of the particles, decays at a rate that depends on the volume fraction.
An exponential fit in timeE(t)= Aexp(−t/t1) + C as in the previous case reveals that
{t1} is approximately proportional toϕ−3.3/3. This is in remarkable agreement with the

FIG. 6. Numerical simulation kinetic energyE(t) (star), its least-square approximation (line), and the time
scalet1 (solid square).
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FIG. 7. Time scalet1 obtained from kinetic energy and its least-square fitting for the power law (4.2).

experimental measurements of Blackwoodet al. [2] and Jollyet al. [21] who have foundn
in (4.2) to be between 2/3 and 4/3.

5. SUMMARY AND CONCLUSIONS

We have presented a computational technique to perform particle dynamics simulations of
MR fluids upon application of an external magnetic field that, for the first time, fully account
for all linear (long-range) magnetic interactions. To calculate these magnetic forces we solve
a (highly oscillatory) magnetostatic problem at each instant in the evolution by appealing to
a fast multipole method on a boundary integral formulation. Additional hydrodynamic and
repulsive forces are accounted for by Stokes drag and approximate hard-sphere/hard-wall
rejections, respectively. We have effectively used the resulting numerical code to study a
number of crucial experimental observables (effective permeability, response time scale)
and have found our results in good agreement with experimental data.
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