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We present particle dynamics simulations for the response of magnetorheologi-
cal (MR) fluids upon application of a magnetic field. The particles motion is con-
sidered to be governed by magnetic, hydrodynamic, and repulsive interactions.
Fluid-particle interactions are accounted for via Stokes’ drag while inter-particle
repulsions are modeled through approximate hard-sphere rejections. In accordance
with their greater significance, on the other hand (linear) magnetic interactions are
fully simulated. The time evolution is considered to be magnetically quasi-static
and magnetostatic forces are derived from the solution of (steady) Maxwell’s equa-
tions, recomputed at each instant in time. For this we use a potential theoretic for-
mulation where the boundary integral equations are solved with a fast multipole
approach. We show that the resulting numerical codes can be effectively used to
study a number of experimental observables such as effective magnetic permeabili-
ties and response time-scales which are of crucial importance in the design of MR
fluids. (© 1999 Academic Press

Key Wordsparticle dynamics; fast multipole method; MR fluids; effective perme-
ability; response time scale.

1. INTRODUCTION

Magnetorheological (MR) and electrorheological (ER) fluids constitute important clas:
of “smart” controllable materials. The essential characteristic of MR (resp., ER) fluids
that they may be reversibly transformed from a liquid state to that of a Bingham solid ug
application of a magnetic (resp., electric) field. Although the discovery of these materi
dates back to over half a century ago (Winslow [41, 42] for ER and Rabinow [33] for MR
their industrial realization had, until recently, proved elusive due, in part, to the stringe
stability and durability requirements that such applications demand. Indeed, it was on
few years ago that commercially viable fluids of this type were achieved (Catshib, 6]
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and Leventon [27]) and controllable devices based on this technology are now beginr
to evolve (see www.mrfluid.com). For the most part, these devices employ magnetic flt
as these present a number of advantages over their electric counterparts. These in
higher achievable yield stresses (20 to 50 times those attainable with ER suspensi
lower voltage demands, a wider range of possible liquid carriers, and lower sensitivity
contaminants and extremes in temperature (Wetisd. [38—40], Carlsoret al. [6], Jolly
etal.[22, 23]).

Typical ER and MR fluids consist of micron-sized electrically conducting or magnetical
permeable particles dispersed in a carrier oil. It is this composition that, in fact, result:
their field-dependent rheology: an applied field polarizes the particles which therefore m
to reduce the stored electromagnetic energy of the ensemble. An energetically favor
arrangement consists of particle chains aligned in the direction of the applied field and t
in turn, gives rise to a strong resistance to applied strains (on the order of 100 kPa for
fluids); see, e.g., Carlscet al. [5], Weisset al. [38], Jolly et al. [21-23]. In an attempt
at understanding the main factors affecting this so-called “MR (or ER)-effect” and wi
a view to its possible enhancement for potential applications, a myriad of experimelr
and theoretical studies have been carried out since the effect was first recognized
e.g., Tao [37], Bullough [4], and references therein). The great number of variables t
influence this behavior, however, conspired against the derivation of an accurate quantit:
assessment of their relative importance since experiments could only explore small fract
of parameter space and theoretical work had to rely on over-simplified models. As it bec:
practicable, on the other hand, it also became clear that numerical simulations on n
complete models could deliver substantial information for the design of new or improv
fluids. In particular, over the last decade, a number of numerical studies were perforr
on particle dynamics models for ER fluids that have sought to account for the differ
types of interactions (electric, hydrodynamic, Brownian, etc.) that arise in the presenc
applied fields (Klingenbergt al.[25], Hass [17], Hess and Weider [18], Mohedbial. [30],
Parthasarathy and Klingenberg [32]). In this manner, the qualitative features of a nun
of experimental observables (such as the path of chain formation) were recreated and
insight was gained into the mechanisms responsible for the ER effect.

In order to make these models numerically tractable, a number of simplifications ha
be performed. Some of them, such as neglecting Brownian forces, could be easily jt
fied on the basis of simple scaling arguments (see, Subsection 2.2). Others, however,
only made for computational convenience. In fact, such was the case, for instance, with
inter-particle electromagnetic forces as well as with their hydrodynamic behavior. Althou
these are clearly the dominant effects within the system, their accurate mathematical
resentation required what appeared to bpracttically impossiblé(Bonnecaze and Brady
[3, p. 2188]) solution of Stokes or Maxwell's equations in a highly oscillatory geomet
and were therefore, in all of these treatments, replaced by point-dipole and Stokes ¢
approximations, respectively. We intend to show here, on the other hand, that some re
advances in the development of computational algorithms do indeed allow faccan
rate and efficientreatment of such oscillatory problems. While it is still certainly true tha
standard finite-element or boundary-element calculations on these models (where eact
ticle, or particle boundary, would comprise several elements and where all of which wo
contribute to the overall field) are well beyond today’s computational capabilities, we st
demonstrate that such calculations become practicable through the ufesbfraltipole
method(FMM).
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The basic idea behind FMM (Rokhlin [34], Greengard and Rokhlin [12], and Greenge
[11]) consists of using multipole expansions to calculate far-field contributions to a slov
decaying (e.g., Newtonian) potential at any given point. This observation can, in fact, be
fectively used in a wide variety of (linear) potential calculations by appealing to the iterati
solution of the corresponding boundary integral equations (see Section 3). For the pre
work we have initially implemented an FMM to handle the full (linear) electromagnetsi
interactions at each time step of a particle dynamics simulation (Section 3), while we h
kept with previous models in treating the hydrodynamics via Stokes drag. We note, howe
that an analogous fast multipole approach can be used to solve the full Stokes equatio
fluid flow (Greengard and Kropinski [16]). It should also be remarked that, in accordar
with their greater practical importance, our interest lies with MR fluids which, in fact, w
use for experimental validation (Section 4). While our model in its present state would,
principle, equally apply to ER fluids, we suspect that our assumptions on the domina
of electromagnetic and hydrodynamic forces constitutes a better approximation in the «
of MR composites, as is evidenced by their aforementioned enhanced stability proper
In any case, these considerations and those pertaining to other possible extensions (S
equations, three-dimensional geometries, models of rheological response, other highe
der effects, etc.) will be left for future work. Specifically, our formulations can, in principle
be immediately applied to the three-dimensional case. However, such implementatior
quires a good three-dimensional fast multipole algorithm which, to our understanding
still under development.

2. EQUATIONS OF MOTION

2.1. Governing Forces and Equations

In this section, we derive the equations of motion for circular particleR?rin the
presence of an external magnetic fielg. The motion of thekth particle is described by
Newton’s second law of motion

d%Xc -

X _F 2.1
My qe ks (2.1)

subject to the initial position and velocity
XX =%(0) and V2 =Vy(0), (2.2)

where M is the mass¥ is the center, anﬁk is the total force acting on theh particle,
which occupies the regiof2x. Contributions td= arise from several sources, namely (see
e.g., Klingenberget al.[25], Parthasarathy and Klingenberg [32], and Mohettal. [30]):

e Magnetic forcesThe magnetic force oy can be calculated from the local fiektl
with the aid of the Maxwell stress tensel® = p[HH? — 2|H|25] (8 = unit tensor and
1o = the permeability for the carrier oil) as

_ 1
froo= L[ oMo i ds 23)
27T QK

whereni is the unit normal vector o8y.
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e Hydrodynamic forcedzor small Reynolds number, the hydrodynamics can be deco
pled from the magnetostatic problem and can be approximated by the Stokes’ drag
Batchelor [1, p. 244] for details). Indeed, the hydrodynamic force can be approxima
using Oseen’s equations for flow due to a moving body at small Reynolds number as

2hydro _ dX
Fy DW (2.4)
For circular cylinders for instance, the Stokes drag coefficizng given by D =4mn./
log(7.4/Ré@ per unit length. Herej is the carrier oil absolute viscosity arRe is the
Reynolds number. Formulation (2.4) has been widely used to approximate the hydrodyneé
force in dynamic simulations for both MR and ER fluids (see, e.g., Klingerdteaty[25],
Hass [17], and Moheht al.[30]).

e Repelling forcesIn our simulations, we shall assume that both the particles ar
the container walls arbard. To approximate this regime, we shall follow the work of
Klingenberget al. [25] and Mohebiet al. [30] and propose that eepelling forceacts on
thekth particle as it approaches others or a wall of the container. A simple model for st
a force is given, for instance, by

dwa\l‘

FeP = —ukHORZrHe Pl _ Ay i HER €77 (2.5)

1=1

where M is the total number of particled;ly is the intensity of the applied magnetic
field, Ris the radius of the particlegd > 0 is the repelling parametéi = (X — Xk)/|X —
Xk, dy = dist(Qy, €21). The wall repelling force useSy, an outward unit normal vector
at a pointp on the boundary of the contain€ where p is closest toxx on %2, and
|d¥"a”| =dist(Qy, 02). Other models, including polynomial forms, have been studied b
Klingenberget al.[25].

2.2. Dimensional Analysis

Our simulations will proceed on the non-dimensionalized equations of motion whi
we now derive. Let us begin by denoting the dimensionless variables with an asterisk
performing the following scalings in Egs. (2.1)—(2.2)

X = RX",
t = tt*, 7 is the scaling timg
Frod= FSFy%%, st = noHgR,
Frep Fs Frep*’ FLep* Z P e Pldil _ R, e ﬁ\dwa”|
I=1
thdro _ DRdx{ DR 47 Ne
e s T =——"=———————5.
T dt Fe  iolog(7.4/Re HE
It then follows that
gkdz%E _ Fros® + P (2.6)

de? — dt ’
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where

G - MR _ pp REH 11k
“T FstZ T 3272[log(7.4/Re)22

is a dimensionless constant apg is the density of the particle per unit length. For the
MR fluids we seek to model, the particles are basically composed of iron with diamet
of 3 to 5 microns ang, = 10° x 1. The carrier oil viscosity)c = 0.01 — 0.1 Pa-s and the
applied magnetic flux.oHg = 0.001— 0.1 Tesla, so tha@ = 10~*. Thus the term on the
left of (2.6) is several orders of magnitude smaller than those on the right hand side,
we therefore set it to zero. Consequently, the equations of motion (2.1)—(2.2) become

Z):: =FP LR and X = %(0). 2.7)

Itis to be remarked that for MR fluids with characteristics as described above, the ther
effects from the continuous phase molecules on the particles are quite small for rapid f
application (Mohebgt al. [30]). Therefore, the magnetostatic forces largely dominate th
Brownian forces. More precisely, the ratio of the Brownian force to the magnetic for
is approximately given by =27 KT /R3ucHZ, wherelC =1.38 x 10722 Joules/K is the
Boltzmann’s constant antl = 298 K is the operating temperature. In our case, this ratio i
of order 108 which justifies our neglecting the effects of Brownian motion.

3. MAGNETIC FORCES

Clearly, the main challenge with the model (2.7) consists of the calculation of the higt
oscillatory magnetic interactior{é’k"ag*}ﬁ/'zl. Indeed, an accurate estimation of such force:
demands the continuous knowledge of the local magnetic fibles the particles rearrange
themselves, so that Maxwell's equations must be resolved at each instant in time. M
precisely, let us consid€2 c R? which is filled with a non-magnetic viscous fluid aivti
permeable circular particle®;, Q2, ..., 2m. Then, since the electromagnetic time scale
is much shorter than that of the motion itself, we may safely assume that the fields
governed by the equations of magnetostatics, namely,

V.-B=0, and VxH=2J, (3.1)

where] is the free currentd is the magnetic field, andl is the magnetic induction. In our
case, the material constituents are isotropic and hence

B =Bi + uoH = uH, (3.2)

whereB; is the intrinsic induction caused by magnetizatigg s the permeability of free
space, and

_ {Mk in thekth particle (3.3)

no in the carrier oil.

Notice that the{u}M., are not necessarily identical and are substantially larger the
o (k ~ 200Qup). In generalu is defined as a function ¢ to model magnetic satura-
tion. For moderate fields, however, may be accurately approximated as a constant an
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we shall take this as our working assumption. Moreover, for the composites we consi
no free currents are present in the domain. Thus the second equation in (3.1) becc
V x H =0 which, in turn, implies that the magnetic field can be written in terms of a scal
potentialg,
H=_vg. (3.4)
As aresult, Egs. (3.1)—(3.4) can be simplified to
V- (uVe) =0, (3.5)

with u given by (3.3) andl, 1o constant. Note that (3.3) implies that Eq. (3.5) has highl
oscillatory coefficients. Also, of course, Eqg. (3.5) encodes the continuity of the magne

potentialy and of the normal component Bf That s, for ank=1,2,..., M,
pgryﬂk¢(p) = pgrygk¢(p) (3.6)
peQ peQy;
. ¢ . ¢
lim — = lim —(p), 3.7
p"anMkank_p(p) p»mkﬂoank,p(p) (3.7
pes peQg

wherefi , is an outward unit normal vector pte 92 and2f = Q\S_zk is the complement of
Qk. We remark here that to study the electrostatic particle interactions for ER fluids, Cle
and Bossis [7] attempted to solve (3.5)—(3.7) in unbounded domains using the multif
expansions. They used the relation of the external applied electric field to the multip
moments along with the spherical harmonic functions with unknown coefficients to der
the expansions for the potential which can be solved through the boundary conditi
(3.6)—(3.7). Although the spirit of their work closely resembles ours, formulations for tl
potential are different. Most importantly, both approaches will be unsuitable for numerit
calculation without théast multipole methoaihich we will adopt and use in our calculation
for the potential.

3.1. Integral Equation Formulation and Boundary Element Discretization

Although, as we said, the coefficients of Eq. (3.5) are rapidly changing in space, tl
do remain constant in eagh,. Thus the overall potential can be derived from appropriat
charge densities supported on the boundaries of the particles. These densities satisfy ¢
integral equations which are, in principle, amenable to solution by finite (boundary) elem
approximation. As we shall discuss below (Subsection 3.2), the difficulties associated v
the high computational cost of classical boundary element approximation for this kind
problem can, in fact, be overcome through the implementation of the fast multipole meth

To derive the integral equations, let us denoté £y the boundary of the domai and
impose the following Dirichlet boundary condition 6&q

¢|aQO = f. (3-8)

A potential ¢ satisfying (3.5)—(3.8) can be represented by single-layer and double-la
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integrals, see, e.g., Colton and Kress [8] and Greengard and Moura [15], in the form

M G
b(p) = Z/m G(p, CI)nj(CI)dS(CI)+/ 2 (p.gE@ds@. pef. (39)
2 Je,

903 Q0,9

Here,Ryq,. q is the outward unit normal vectors g 92 andG(p, q) = % loglp—qlis
the fundamental solution of Laplace’s equatiofikth The functions;;’s on {89,—}}2" and

& on 0Qq are appropriate (unknown) surface densities. Note that the potenitia(3.9)
automatically satisfies

Ap =0 onQ fork=0,1,..., M,

and the continuity condition (3.6) at the interfaces. In this regard, we remark here that
representation of the potential differs from thestandardone described in most of the
pertinent literature. Indeed, whilestandardrepresentation would involve both single- and
double-layer potentials at each material interface, the formulation (3.9) implicitly guarant:
the continuity of the potential at particle-fluid boundaries. In addition, the use of a s
double-layer integral on the exterior boundary ensures that the equationsfandé that
result from (3.7)—(3.8) constitute a system of Fredholm equation of the second kind. In f;
using thejump relationsof potential theory (see, e.g., Jaswon [19] and Colton and Kre:
[8]), we obtain from Eqgs. (3.7)—(3.8) the following system of integral equations,

n(p) — zxkz / 75, C(P. 0@ ds(@)

0 G
— 20— — , ds(q) =0, 3.10
e /a e (P @A) (3.10)

M
5(10)+2§:/aQ G(p, q)nj(q)dS(q)+2/ (P, é(@) ds(q) = 2f(p), (3.11)
j=1 i

o Mg,

whereiy = (uk — ro)/(1k + o) and Egs. (3.10)—(3.11) hold far e {9} ; anday,
respectively.

Our approach to the solution of Egs. (3.10)—(3.11) (at any fixed instant in time) relies
the inversion of their discretized version. To this end, we d|V|de each boumﬂai}y‘ o
including the extenor boundary, intd; disjoint element$yJ }I ~, and we denote pr' }|N 1
the midpoint of{yJ }I 2y forj=0,1,..., M andN = Z _o Nj. To derive the approximate
equations, we assume that the unknown densvﬁlﬁ}$"_l andg in (3.10)—(3.11) are constant
over each element, with collocation taken at the midpoints. That is,

/Iuw,q)g(q)ds(q)zg(p'j)/ U(p, o) ds(@)
Vi

J

for p being eithem; or &£ andU being one of the kernels in (3.10)—(3.11). Thus, denotin
nlj =1j (p'j) andg' =£(p}), Egs. (3.10)—(3.11) can be transformed into a matrix equatiol

(I + My)Un = Fn. (3.12)
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Here,l istheN x N identity matrix,

A B @ . 0 1<i<N
MN:[ } N D I T
C D 2f (o), N+1<i<N-+ N,
whereN denotes” " ; Nj,
n U &
- 2
o=|"1]. F= n:k fori<k<M, &= E.Z :
M 77ka ENo
. M L — Q) - iy
AD(pl) = —2X 3" n'j/ (P 9) T =% ds(q), (3.13)
T “ | I
j=11=1 Yi |pk q|
f) =236 [ " logle—q
BE(p,) = — X3 ¢ / " log|p,— q| dsa, (3.12)
K m ° Iy CARELTE K
13 .
Co(py) = ;Z n'j /| log | py — a| ds(a), (3.15)
j=11=1 Yj
No i R
L 1 q—pp) - A,
D¢ (pp) = = sé/l (io—){“‘ds(q). (3.16)
T3 Yo ‘DO—Q|

3.2. Numerical Implementation

To solve forUy in (3.12), we use an iterative method, namely GMRE&néralized
minimal reddue). As an iterative solver, GMRES demands the repeated calculation
products(l + M y)Uy. The matrixM y in our linear system (3.12) is fully dense so that
multiplication of My andUy would requireO(N?) operations. However, as we describe
below, by exploiting the physical nature of the underlying magnetostatic problem it
possible to accurately approximate these matrix vector multiplication by a procedure,
fast multipole metho@FMM), whose operation count is only 61(N log N).

The FMM algorithm was introduced in Rokhlin [34] for rapid solution of integral equa
tions in potential theory and later extended by Greengard and Rokhlin [10] to fast evalua
of Coulombic interactions in large-scale systems of particles. A typical calculation of t
field at a given point due to a distribution of charges Uy, in our notation) can
be broken into two parts, the far-field and the near-field calculations. However, since
Coulombic potential decays rather slowly (logarithmically), the far-field calculation mu:
in principle, account for all interactions among the particles and, consequently, the nur
of operations for calculating the field @(N?). The goal of the fast multipole method is
to reduce this number of operations while accounting for all interactions and maintain
any desirable order of accuracy. To achieve this, the basic strategy consists of clusterin
charges at different spatial lengths to allow for the computation of the interactions betw
clusters by using multipole expansions. Near-field interactions are computed directly. T
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systematic process is the key ingredient in reducing the number of operations in the nui
ical matrix-vector multiplications. Complete details of the FMM algorithm can be found |
Greengard [11]. For other applications and implementations of the FMM see also Rokl
[34, 35], Greengard and Rokhlin [10, 12], Greengard and Gropp [13], Greengard and St
[14], Engheteet al. [9], Murphy et al.[31], Greengard and Moura [15], Jonetsal. [24],
McKenneyet al.[29], and Greengard and Kropinski [16].

3.3. Error Analysis

In this subsection, we present a simple error analysis for the solution of the bound
element method discussed in the previous subsection. Since we employ the midpoint
for all the quadratures, the order of convergence is expected and will be shown to
at least quadratic. Let us start with a system of integral equatiossM)U =F where
U,F € L3(I") andM : L%(I") — L2(I") is a compact operator (tHe?(I")-topology can, of
course, be substituted by others depending on the regulatity. &/e assum®/ takes the
form

MUP) = [ K(p @U@ da,
Also, the discretized boundary integral equations can be written Ak>amN system
(I + MU = Fy

with the midpoint collocated right-hand sidey]; = F(p;) for 1 <i < N, where thep;’s
are the midpoints of the segmeniiz }\ ;, so that [I + M)U](pi) — (I + My)Un =0. By
defining(PnU)i =U (pi) x(p), We have

(I + Mn)(Un — PyU) = PyMU — My PyU. (3.17)
For sufficiently smooth boundaries alcompact, it can be shown that (see Kress [26])

|l + MN)’1||“2;|2} <K, independently oN. (3.18)

It follows from (3.17) and (3.18) that

[Un = PnUJlz < CIECIPNMU — My PyU |2, (3.19)

for N > 0. Let E=PyMU—-MyP\U denote the locally truncated error pt Since we
are using the midpoint quadrature rule, fpaway from the midpoints

N
E(P)i2 = |/FK<p,q)U<q)dq—ZK<p, pPOU(P)ITII| < O(N72),

i=1 12
which implies
IlUn — PaU iz < CoKNT2,

For p=pi, we computefr‘ K(pi, 9)U (q) dg exactly (see Greengard and Moura [15]).
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4. NUMERICAL RESULTS

In this section, we first describe the physical regime and parameters for the dynamic
ulations of five MR fluids. We then discuss our results and quantify the magnetic respor
based on their time scales and effective permeabilities.

4.1. Microstructure Evolutions in MR Fluids

The dimensions for the rectangular domain that we consider for dynamic simulat
areLy x Ly =0.237x 0.1 mm. We assume that all particles are circular, initially centere
randomly at{X; }ile. We consider five samples of MR fluids, corresponding to 5, 10, 15, 2
and 30% volume fractions. We remark here that due to our two-dimensional framewc
volume fractions should be understood as area fractions. There are 170, 341, 511, 682
1024 particles for the respective samples. In addition, we assume the following phys
parameters in our simulations:

radius R = 1.5 micrometers
fluid density po = 10° kg/m?
particle density o =7X pg

fluid permeability o = 4r107 "N/ A?
particle permeability  ux = 2000x .
viscosity ne=0.1Pas
applied field Ho = 1.33E4 A/m.

The repelling parameter in (2.5) and the Reynolds number are assumed to be 40 and
respectively. For the boundary conditions on the rectangle, we asssatesfies

HoLy(1— ), O<y<Ly, x=L

poxyp =] ) e (4.1)
0, OSXS Lx, y: Ly
Holy(1- ), 0<y<Ly x=0.

The results for the dynamic simulations for 10, 20, and 30% volume fraction MR fluids
displayed in Figs. 1-3, respectively.

Based on these results, we observe that, at first, particles form short fragmented chai
the direction of the applied field. Subsequently these short chains merge together and
longer chains. As time progresses further, these chain-like clusters continue to lengt
align, and approach a steady state. We also observe that the times for the columnar struc
to form and the particle volume fractiap) of the sample are inversely related.

4.2. Quantifications of Microstructure Evolutions

Recent experimental work has been conducted to indirectly measure the microstruc
response in MR fluids using real-time permeability measurements @o#i; [21]) and
analogously in ER fluids using permitivity measurements (Blackwataal. [2]). In both
cases, experimental data were fitted with exponential functions in an attempt to identify
time constants$, for microstructure formation. A theoretical estimate of such constants c
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Time = 1.138 milliseconds

Time = 1.691 milliseconds

b

Time = 13.65 milliseconds Time = 15.52 milliseconds

FIG. 3. Dynamic simulations for MR fluid with 30% volume fraction.

be easily derived by consideration of the time response of a pair of point dipoles withi
viscous fluid; this results in (Jollgt al.[21])
~ Cinc

ty =
uHE

9"+ Co (4.2)

with n=5/3. In this subsection, we undertake a numerical study of these time scales. |
lowing the experimental procedure, we first derive values for such constants from effec
permeability calculations. Finally, we estimate similar constants from different macrosco
measurements, namely that of tagerage kinetic energy.

We begin by examining the evolution of the effective permeability of the MR fluid as
function of time. As we said, we do so with the expectation that the effective permeabil
reflects the microstructure state within the MR fluid. The definition and the formulation f
the effective permeability, which is based on theory of homogenization (Jikov [20]), &
derived in Lyet al.[28]. The effective permeability is defined as a matrix

_ [1711 1712}
Meff = | — — |
M1 M22
where
e (Vo (X)) = (n(X) Ve (X)), (4.3)

and (-) denotes the spatial average. Using Green’s identity and the boundary conditi
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(4.1), Eq. (4.3) yields explicitly

122 E /L - /L (ﬁl 1 d S
12 = I I I I y ( k 0)/ X

1

= — das
Ho+ ol LyZm o) | gny

/IZZ
Because the applied magnetic field is in the vertical directjon,is a more relevant
guantity and we denote hy:= 2, the effective permeability reflecting the overall magnetic
response of the MR fluid. In Fig. 4, we display the effective permeability as a function

Exponential Approximation: mu(t)=A*(1 —exp(—t/tl))+C
2. 8 T T T T T T T T T
2.61 .
S24f .

=
22 —  30% VF;A=0.T7, E:0.00ZS; C=2.01 |7
2 =

0 001 002 0.03 004 005 006 007 008 0.09
sec

T T T T T T

> 20% V.F.;A=0.53; 1i=0.0057; C=1.59

0 001 002 003 004 005 006 007 008 009
sec

T T T T T T L

15% V F.;A=0.37; E=0.0099; C=141

0 001 002 003 004 005 006 007 008 009
sec

T T T T T T T T T

—  10% V.F.;A=0.25; E:0.0ZS; C=126 ||

0 001 002 003 004 005 006 007 008 0.09
sec
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5% V.F.;A=0.096; E:0.0SS; C=1.12 |

0 001 002 003 004 005 006 007 008 0.09
sec

FIG. 4. Least square fitting (line) on the computed effective permeability (star) and the timet;s¢sdéd
square).
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time. We remark that the effective permeabilities obtained from the dynamic simulatic
are roughly 40-50% smaller than those obtained from numerical and physical experim
in Simonet al. [36]. One reason we suggest pertains to the percolation limit of partic
separation. As pointed out in the study of Simemnal. [36], the inter-particle distance
plays a major role in the effective permeability in MR fluids: the permeability increas
as the inter-particle distance decreases. For the two-dimensional case, it is necessse
allow the particle gap to approach 1% of the particle radius in order to achieve vall
comparable to those of experimental results. In our simulations, the gaps between part
were constrained to at least 4% of the radius. One could allow the particles in our stud
get closer to 1% of the radius by refining the boundary integral element which, of cour
would lead to prolonged computing time.

Figure 4 shows that the values of the effective permeabilities elevate faster for sam
with higher concentration of iron. To identify the time-scales that correspond to this beh
ior, we perform an exponential fit to a function of the foutt) = A(1 — exp(—t/t1)) + C
for each of the considered samples. The values of the time stafes the respec-
tive volume fractions are displayed in Fig. 4 by the large solid squares. To determ
the dependence of the time scajeon the volume fractiorp, we use Eq. (4.2) to fit
the data in Fig. 4 to find that ~ 1 (see Fig. 5). In this regard, our experiments indi-
cate that the value of the powaeris rather insensitive to the initial configuration of the
system.

Magnetic Time Response: t=A * VolumeFraction " +C

T T T T T T

*——=  Simulation Time Scale; Residue = 0.056233
o----~a  Approximated Time Scale; A=0.0037; n=0.95; C=-0.01

0.07r

0.06 .

0.051

=~ 0.04F

0.03

0.021

0.01r

! | | | il
0 0.05 0.1 0.15 0.2 0.25 0.3
Volume Fraction

FIG.5. Time scald; obtained from effective permeability and its least-square fitting for the power law (4.2)
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Finally, motivated by the observation of initial rapid particle motion and subseque
slow rearrangement, we have monitored the evolution of the average particle kinetic
ergy E(t) as another macroscopic measure of microstructure changes. For this we de
E(t) = 3MV(1)2 whereM is the particle mass and(t) is the average velocity,

M

— 1 X (t) — Xi(t — At
Ty = L 30 Bl =3t = A0)

k=1

Figure 6 displays the average patrticle kinetic endtgly and confirms thakE (t), associated

with the motion of the particles, decays at a rate that depends on the volume fract
An exponential fit in timeE(t) = Aexp(—t/t1) + C as in the previous case reveals that
{t1} is approximately proportional tp—3%/3. This is in remarkable agreement with the

<107 Average Kinetic Energy Approximation: E(l):A*cxp(—tltl)+C

T T T T T T T T T
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FIG. 6. Numerical simulation kinetic energi(t) (star), its least-square approximation (line), and the time
scalet; (solid square).
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Magnetic Time Response: t 1:A * VolumeFraction "+C

*——  Simulation Time Scale; Residue = 0.065268
0.05- @- - -o  Approximated Time Scale; A=0.0017; n=1.1; C=-0.0046
0.04+ -
0.03F b
0.021 b
0.01F b
O i | | ! 1 1
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FIG. 7. Time scald; obtained from kinetic energy and its least-square fitting for the power law (4.2).

experimental measurements of Blackwaa@l. [2] and Jollyet al.[21] who have founadh
in (4.2) to be between/3 and 43.

5. SUMMARY AND CONCLUSIONS

We have presented a computational technique to perform particle dynamics simulatior
MR fluids upon application of an external magnetic field that, for the first time, fully accou
forall linear (long-range) magnetic interactions. To calculate these magnetic forceswe s
a (highly oscillatory) magnetostatic problem at each instant in the evolution by appealin
a fast multipole method on a boundary integral formulation. Additional hydrodynamic a
repulsive forces are accounted for by Stokes drag and approximate hard-sphere/hard
rejections, respectively. We have effectively used the resulting numerical code to stuc
number of crucial experimental observables (effective permeability, response time sc
and have found our results in good agreement with experimental data.
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